
International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 1215
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Controlling Database Access by Providing
Access Permissions on Database Objects

1Manushi Majumdar, 2Anu Unni, 3Hrishikesh Babar, 4Abhishek Birjepatil, 5Prof. Anand Magar
Sinhgad Academy of Engineering,

 (University of Pune),
Kondhwa-Bk, Pune

Abstract— The paer focuses on securing a table in the database, to the row level, implying that not all the rows in a database can be
accessed by the end user. A user can access and perform operations on only those rows which he has been assigned right to access.
Traditionally, there are various ways and techniques to achieve this. The approach adopted by us is analogous to the NTFS security and
Permission model, where every row in the database table corresponds to an NTfs object, i.e a folder or file. Permissions controlling access
are applied to every database object. Moreover, a hierarchial structure of the objects can be enabled using the Role Based Access Policy
(RBAC). Using RBAC principles, multiple hierarchy could also be supported, where in an object could act as a parent object to another
object, thus implementing inheritance of permissions from parent to child object. The resultant permission obtained on the child object
could be calculated and resultantly enforced when a user wants to access it.

 Index Terms— NTFS, Permission, RBAC, Access Control, Database, Hierarchy, Database Object

—————————— ‹ ——————————

1 INTRODUCTION

In this era of Information, a very huge amount of
information is stored in the form of a database. For instance, in
a business environment, databases are maintained to store
client details, financial information, human resource details,
i.e. all the data that keeps your company in business. Hence it
is extremely important to secure the data in the database to
make sure that the data is not accessed by people unauthorized
to do so. Also, the database needs to be secured even at the
row-level of a table, so as to prevent all the data contained in
the table to be accessed by even those unauthorized for the
same. An example of a table storing the employee details of an
organization could be considered for the above case. Not
every employee must be allowed to see the details of a
particular employee. To achieve this, access to the database
has to be controlled on an extremely granular level.
 The New Technology File System(NTFS),
incorporated by the Microsoft Corporation for it's Windows
Operating Systems was meant to replace their initial File
System FAT[1]. NTFS has many advantages over FAT,
including reliability, increased storage capacity and efficiency.

Details of Authors: 1,2,3,4 are Students of B.E (Information Technology) at
Sinhgad Academy of Engineering. 5 is a professor at the Information
Technology Department of Sinhgad Academy of Engineering, and is the
faculty guide of the afro mentioned students who have performed the research.
Email-id: manushi.majumdar@gmail.com, anu33unni@gmail.com,
hrishikeshbabar@gmail.com, abhishek_birjepatil@hotmail.com,
anand7375@gmail.com

But a striking feature of NTFS is its security, i.e. NTFS offers
a secure environment and flexible control over what can be
accessed by which users, to allow for many different users and
groups of users to be networked together, with each able to
access only the appropriate data.[2] Our paper aims to follow
the NTFS security and permission model to adopt their
security principles at the database level, so as provide for
controlled access. Also the Role Based Access Control
technique is extended on the database model, to limit access to
users based on the roles they have and the permissions and
access rights granted to the roles.

2 LITERATURE SURVEY

2.1 NTFS

 Security in NTFS s oriented around the key concept
of assigning rights to specific users or groups of users. As per
requirement, a number of user accounts are created, each
comprising of a user or a group of users. The user accounts are
classified based on some common credentials held by the
users, and the access rights that the respective account has on
the files and folders present. A set of predefined permissions
are enabled on the contained files and folders based on the
respective accounts. Access control lists (ACLs) are used to
manage which users and groups of users are allowed to access
different files and folders (objects) within NTFS volumes.

International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 1216
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

These ACLs contains entries that specify what rights each user
or group has for the object in question. These access rights are
called permissions. The six basic permissions created for
NTFS objects are READ(R), WRITE(W), EXECUTE(X),
DELETE(D), TAKE OWNERSHIP(O), CHANGE
PERMISSIONS(P). Additionally one can even apply a FULL
CONTROL to a group where the group is granted all the
permissions and complete access. NTFS permissions can be
"granted" or "denied". Another feature of NTFS security is
inheritance of permissions, where the child file or folder
inherits the permissions applied on it's parent folder or other
folders up the hierarchy.

But for any file or folder, the explicitly applied permissions
have higher precedence over the inherited permissions.
Similarly, permissions denied have a higher precedence over
permissions granted.
The following Rules apply in the process of permission
resolution:

1. "Deny" permissions take precedence over "allow"
permissions.

2. Permissions applied directly to an object take
precedence over permissions inherited from a parent
object.

3. Permissions inherited from near relatives take
precedence over permissions inherited from distant
predecessors. So permissions inherited from the
object's parent folder take precedence over
permissions inherited from the object's "grandparent"
folder, and so on.

4. Permissions from different user groups that are at the
same level (in terms of being directly-set or inherited,
and in terms of being "deny" or "allow") are
cumulative. So if a user is a member of two groups,
one of which has an "allow" permission of "Read"
and the other has an "allow" of "Write", the user will
have both read and write permission--depending on
the other rules above, of course)

Hence the hierarchy followed by the permissions is as
follows: Explicit Deny -> Explicit Allow -> Inherited
Deny -> Inherited Allow [3]

Fig. NTFS Permission Enforcement

2.2RBAC

Role-based access control (RBAC) is a method of regulating
access to computer or network resources based on the roles of
individual users within an enterprise. In this context, access is
the ability of an individual user to perform a specific task,
such as view, create, or modify a file. Roles are defined
according to job competency, authority, and responsibility
within the enterprise. RBAC is a specialized permission model
that applies permissions on the predefined roles, and roles are
assigned to one or more users. It is a technique that brings the
set of users on one side and the set of permissions on the
other.[4] Thus, in order to access an object, a user needs to
hold a particular role that contains permissions to access the
object. The four components of the RBAC system are as
follows:

A. CORE RBAC
 It embodies the essential aspects of RBAC. The basic
concept of RBAC is that users are assigned to roles, and users
acquire permissions by being members of roles. Core RBAC
includes requirements that user-role and permission-role
assignment can be many-to-many. It includes requirements for
user-role review whereby the roles assigned to a specific user
can be determined as well as users assigned to specific role. A
similar requirement for permission-role review is imposed as
an advanced review feature. It allows includes the concept of
user sessions, which allows selective activation and
deactivation of roles. Finally it requires that users be able to
simultaneously exercise permission of multiple roles. This

International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 1217
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

precludes products that restrict users of activation of one role
at a time.[5]

B. HIERARCHICAL RBAC

It adds requirements for supporting role hierarchies.
A hierarchy is mathematically a partial order defining a
seniority relation between roles, whereby the seniors roles
acquire the permission of their juniors, and junior roles
acquire the user membership of their seniors. This standard
recognizes two types of role hierarchies
1.General Hierarchical RBAC: In this case, there is support
for an arbitrary partial order to serve as role hierarchy, to
include the concept of multiple inheritance of permissions and
user membership among roles.
2.Limited Hierarchical RBAC: Some systems may impose
restrictions on the role hierarchy. Most commonly, hierarchies
are limited to simple structures such as trees and inverted
trees[5]

C.SEPARATION OF DUTY RELATIONS

 Separation of duty relations are used to enforce
conflict of interest policies. Conflict of interest in a role-based
system may arise as a result of a user gaining authorization for
permissions associated with conflicting roles. One means of
preventing this form of conflict of interest is though static
separation of duty (SSD), that is, to enforce constraints on the
assignment of users to roles. The SSD policy can be centrally
specified and then uniformly imposed on specific roles.
Because of the potential for inconsistencies with respect to
static separation of duty relations and inheritance relations of a
role hierarchy, we define SSD requirements both in the
presence and absence of role hierarchies. SoD policies deter
fraud by placing constrains on administrative actions and there
by restricting combinations of privileges that are available to
users

1.Static Separation of Duty Relations:

 Static Separation of Duty. SSD relations place
constraints on the assignments of users to roles. Membership
in one role may prevent the user from being a member of one
or more other roles, depending on the SSD rules enforced.
Static Separation of Duty in the Presence of a Hierarchy. This
type of SSD relation works in the same way as basic SSD
except that both inherited roles as well as directly assigned

roles are considered when enforcing the constraints.

2. Dynamic Separation of Duty Relations:

Dynamic separation of duty (DSD) relations, like
SSD relations, limit the permissions that are available to a
user. However DSD relations differ from SSD relations by the
context in which these limitations are imposed.
DSD requirements limit the availability of the permissions by
placing constraints on the roles that can be activated within or
across a user’s sessions. DSoD policies deter fraud by placing
constrains on the roles that can be activated in any given
session there by restricting combinations of privileges that are
available to users.[4]

Fig. RBAC Components[6]

3 PROPOSED WORK

 All the necessary objects that require controlled
access must be stored in the database. RBAC can be
implemented by maintaining a hierarchy of those database
objects, i.e organizing them in a parent-child structure. This is
analogous to NTFS where, a particular folder could have
multiple parent folders in a hierarchy as well as multiple
file/folders as children in hierarchy. The parent and child of
every object, if any, could be maintained in another table that
holds the inheritance details. This table could reference the
original table that stores all the necessary objects, with the
help of its primary key. Thus, for every tuple, the hierarchy
table would store the primary key of the objects acting as
parent and child. Multiple inheritance, could also be taken care
of by this table structure where the child object of a particular
parent-child pair, could act as a parent object of another
parent-child pair, thus implying the presence of Limited
Hierarchy or General Hierarchy RBAC. Also, as in the NTFS
model, a particular file system object could belong to multiple

International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 1218
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

groups, similarly one database object could have multiple
parent objects that it is associated to. Hence, as per the
demand of the system to be implemented, Static or Dynamic
Separation of Duties could be carried out to control access for
a session or permanently.
Taking this further, permissions can also be set on the
database objects, which further limit the access one will have
on the database object, as well as the tasks one is authorized to
perform on them. If we consider the example of the basic
permissions provided by NTFS, and prepare a structure as
follows:

Position Permission
1 Read
2 Write
3 Execute
4 Delete

 Table 1: HierarchyTable

In the above table structure, position is a primary key
numeric value indicating the position that the particular
Permission has in the PermissionNameTbl. A permission
string could be associated with every object in the database.
For instance, an Obejct A is assigned permissions Read and
Delete, then the resultant permission string for Object A will
be "1001" where
1 = permission at the respective position is "assigned"
0 = permission at the respective position is "not assigned"

 Additionally, stored procedures could be written to
eforce the permissions on the database objects. Whenever the
user of the system wishes to access a particular object, a
permission check procedure should be called that will evaluate
the permissions available on the object by the particular user
and thus grant or deny the access request made. This system
would also successfully implement RBAC as effective
permissions available on an object could vary based on the
role held by the particular user/object accessing the object to
be accessed. The role of the accessing object will determine
the permissions owned by it over the accessed object, which
can vary from session to session. Thus the effective
permissions over the accesed object will be calculated, thereby
restricting access to database objects.

4 CONCLUSION

 Thus we have seen how the NTFS permission
principles can be extended on the database. This approach not
only has benefits of access control that we are looking to
achieve, but also provides the additional benefit of grouping of
users that can simplify delegation of tasks. Additionally,
RBAC has its own benefits when the database has to be
created for an enterprise or for a scenario where users
distinguished based on their roles.In a scenario like this,
distinguishing people based on identity proves to be expensive
as well as inconvenient. RBAC provides for security based on
the roles one has, naturally introducing a hierarchy on the
system designed. Moreover, introducing permissions that a
user has on an object, helps regulate access checks down to
the database level.

5 REFERENCES

 [1] www.ntfs.com

 [2] http://www.pcguide.com/ref/hdd/file/ntfs/sec.htm

[3] MCSE Self-Paced Training Kit: Microsoft® Windows®
2000 Core Requirements, Exams 70-210, 70-215, 70-216, 70-
217, 2nd Edition

[4] Role Based Accesss Control, Second Edition by David F.
Ferrialo, D. Richard Kuhn, Ramaswamy Chandramouli

[5]Role Based Access Control Models by Dr.Saeed Rajput and
Reena Cherukuri.

[6]http://www.joshuatreesoftware.us/iamfortress/javadocs/api/
com/jts/fortress/AccessMgr.html

International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 1219
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

